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Abstract. We compare two high sensitivity techniques which are used to measure very small displacements
of physical objects by optical techniques: the interferometric devices, measuring longitudinal phase shifts,
and the devices used to monitor transverse displacement of light beams. We detail the differences and the
similarities for the quantum limits on the resolution of both systems. In both cases squeezed light can be
used to resolve beyond the standard quantum limit and number correlated states allow us to reach the
“Heisenberg” limit.

PACS. 42.50.-p Quantum optics – 42.30.-d Imaging and optical processing – 42.25.Hz Interference
– 42.50.Ar Photon statistics and coherence theory – 42.50.Dv Nonclassical field states; squeezed,
antibunched, and sub-Poissonian states; operational definitions of the phase of the field;
phase measurements – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

Optics provides very sensitive methods to measure ultra-
small relative displacements of physical objects. Interfer-
ometric techniques are in particular widely used in such
measurements, and the very large Michelson interferome-
ters currently built in different countries to detect gravi-
tational waves [1] represent the ultimate achievements in
this domain. Another highly sensitive technique, somehow
easier to implement, is to measure the transverse rela-
tive displacement between a focussed light beam and a
split detector by differential techniques. This technique,
which reaches currently a nanometric sensitivity, is used
in Atomic Force Microscopy to measure the small move-
ments of the stylus, or to determine molecular motions in
some biological applications [2]. In these measurements, as
in any optical measurement, the ultimate sensitivity is lim-
ited by the quantum nature of the electromagnetic field.
The case of the optical interferometer has been much stud-
ied, and it has been shown that the so-called shot noise or
standard quantum limit is due to the vacuum fluctuations
coupled to the interferometer and to the random motion
of the mirrors induced by the radiation pressure fluctu-
ations [3,4]. Shot noise sets also a limit in displacement
measurement [5], which turns out to be, within a numeri-
cal factor of order one, the same as the shot noise limit for
interferometers. It has been suggested [5] that this com-
mon limit arises from a fundamental similarity between
the physics interferometry and beam displacement mea-
surements.
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It has been long appreciated that the shot noise limit,
or standard quantum limit, does not represent the ulti-
mate limit in optical measurements and that improve-
ments are possible using non-classical states of light [6].
In particular, the improvement of interferometric measure-
ments by nonclassical light has been indeed at the heart of
the development of modern quantum optics [7–12]. It has
been more recently realized that quantum effects play also
an important role in the spatial properties of light [13,14].
This has opened a new chapter of quantum optics, usu-
ally labeled as quantum imaging [15]. Spatial quantum
effects limit our ability to resolve optical images [16,17]
and to measure transverse displacements of an optical
beam [18,19]. It has recently been shown, both theoret-
ically [18] and experimentally [19], that multimode non-
classical states of light produced using a vacuum squeezed
state can indeed be employed to resolve beam displace-
ment below the standard quantum limit.

It is therefore of interest to ask in a more general way
whether non-classical states of light of any kind can im-
prove the sensitivity of beam displacement measurements
in the same way as has been demonstrated for interferome-
try. This is the purpose of this paper, in which we compare
the resolution that can be achieved in interferometry and
beam displacement measurements by using different kinds
of non-classical states of light. After recalling the results
about the standard quantum limit in both cases (rela-
tive sensitivity proportional, as is well known, to N− 1

2 ,
where N is the total number of photons measured in the
experiment), we derive the ultimate limit that may be
achieved using squeezed states of light (relative sensitivity
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proportional to N− 3
4 ), and finally we introduce a scheme

capable of resolving beam displacements at the so-called
“Heisenberg” limit [17], yielding a relative sensitivity pro-
portional to N−1.

2 Quantum noise in interferometry

There is a wide variety of practical interferometers. For
the purposes of this paper, however, it suffices to con-
sider only a very simplified quantum description in which
two input modes, with annihilation operators âin and b̂in,
are superposed to give two output modes with annihi-
lation operators âout and b̂out. The relationship between
the input and output operators will depend on the relative
phase φ associated with the two arms of the interferome-
ter. We suppose that the interferometer is adjusted such
that this relationship is

âout = cos
(

φ

2

)
âin + sin

(
φ

2

)
b̂in

b̂out = cos
(

φ

2

)
b̂in − sin

(
φ

2

)
âin. (1)

This dependence on the relative phase allows us to detect
changes in the phase by measuring the number of photons
in each of the two output modes. For example, the output
modes are simply the respective input modes if the relative
phase shift is 0 and the modes are interchanged if φ = π.
A more complete introduction to the quantum theory of
the interferometer can be found in [20].

2.1 Standard quantum limit

Let us assume for the sake of simplicity that the mirrors
of the interferometer are infinitely massive. In this case,
the fluctuations in radiation pressure [3,4,8] do not play
any role. The shot noise or standard quantum limit in
the phase shift measurement can then be understood by
invoking either the partition noise in the distribution of
photons between the output modes, or the interference
with the vacuum field associated with the unused input
interferometer mode [7]. From the perspective of our sim-
ple model, however, it is more helpful to use this second
approach.

The standard quantum limit to resolution is reached
when one input mode (ain) is prepared in a coherent
state |α〉 [20,21], with the remaining input mode (bin) left
in its vacuum state. We can determine the limiting reso-
lution in this case by finding the signal to noise ratio. The
value of the phase shift for which this quantity is unity
then provides a figure of merit for our phase resolution.
The signal is obtained by measuring the difference in the
numbers of photons detected in the two output modes. If
the phase is shifted by ∆φ from its original value φ then
the expectation value of this difference in photon num-
ber is

〈â†
outâout〉 − 〈b̂†outb̂out〉 = |α|2 cos(φ + ∆φ). (2)

We can maximise sensitivity to the phase shift by choosing
the operating point φ = −π/2. For small phase shifts this
gives the signal

〈â†
outâout〉 − 〈b̂†outb̂out〉 = N∆φ, (3)

where N = |α|2 is the mean number of photons. We could
also choose φ = π/2, in which case the signal (3) changes
sign. The noise level is set by the uncertainty in the differ-
ence in photon numbers recorded in the two output modes
at the operating point (φ = −π/2, ∆φ = 0). A straight-
forward calculation gives

〈(
â†
outâout − b̂†outb̂out

)2
〉

= N. (4)

The square root of this variance is the required uncertainty
and sets noise level so that the signal to noise ratio is

Signal
Noise

=
N∆φ

N1/2
· (5)

Setting this ratio equal to unity gives us a measure of the
smallest detectable phase shift

∆φ = N−1/2, (6)

which is the standard quantum limit for interferometry.
This proportionality between the resolution and the in-
verse square root of the mean number of photons is a
general characteristic of the standard quantum limit and
appears in numerous optical measurements.

2.2 Squeezed states

The standard quantum limit can be beaten if we re-
place the vacuum state of the unused input mode with
a squeezed vacuum state [7,10]. The most straightforward
way to see this is to repeat our calculation of the pre-
vious section, but without specifying the state of input
mode bin. We retain the input mode ain in the coherent
state |α〉 and the operating point φ = −π/2. Under these
conditions, the signal associated with small values of ∆φ is

〈â†
outâout〉 − 〈b̂†outb̂out〉 = ∆φ(|α|2 − 〈b̂†inb̂in〉)

− |α|〈b̂ine−iθ + b̂†ineiθ〉, (7)

where θ = arg(α). Hence the signal is linearly dependent
on the phase shift ∆φ. Indeed, it will be proportional to
∆φ for all states for which 〈bin〉 = 0. These states include
the vacuum and squeezed vacuum states [20,21]. We note
that |α|2 is the mean number of photons in mode ain and
therefore the signal depends on the difference in the num-
ber of photons in the two input modes. The noise level
is again set by the uncertainty in the difference in pho-
ton numbers in the two output modes at the operating
point. If we specialise to states for which 〈bin〉 = 0 then
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we find that the variance in the difference between the
output mode photon numbers is

〈(â†
outâout − b̂†outb̂out)2〉 =

|α|2〈(b̂ine−iθ + b̂†ineiθ)2〉 + 〈b̂†inb̂in〉 · (8)

We see here that the noise associated with the standard
quantum limit arises from the vacuum fluctuations or un-
certainty in the field operator b̂ine−iθ+b̂†ineiθ, which satisfy:

〈0|(b̂ine−iθ + b̂†ineiθ)2|0〉 = 1. (9)

We can reduce the noise level by preparing mode bin in a
squeezed vacuum state |ζ〉 chosen so that

〈ζ|(b̂ine−iθ + b̂†ineiθ)2|ζ〉 = e−2r, (10)

where r is positive. The noise level (8) can clearly be re-
duced by using this squeezed state. We should note, how-
ever, that a mode prepared in the squeezed vacuum state
will contain photons. Indeed, the mean photon number for
the squeezed vacuum state is

〈b̂†inb̂in〉 = sinh2 r. (11)

The signal to noise ratio is again given by the signal (7)
to the square root of the variance (8):

Signal
Noise

=
(|α|2 − sinh2 r)∆φ

(|α|2e−2r + sinh2 r)1/2
· (12)

Setting this ratio equal to one again gives us a measure
of the smallest detectable phase shift. For moderate levels
of squeezing, the number of photons in the coherent in-
put mode will greatly exceed the number in the squeezed
vacuum mode (|α|2 � sinh2 r). This leads to a simplified
form for the signal to noise ratio and hence of the smallest
detectable phase shift

∆φ =
1

N1/2er
, (13)

where we have used the approximation N ≈ |α|2. This
minimum resolvable phase shift is clearly reduced below
the standard quantum limit by the same factor (er) by
which the uncertainty on the squeezed input quadrature
is reduced below the level associated with the vacuum.
The improved phase resolution (13) has been observed in
experiments [10,11]. In seeking the ultimate limits, how-
ever, we should consider the possibility of very strongly
squeezed light, with r � 1, and attempt to find the mini-
mum resolvable phase. We can find this by returning to the
general expression (12) and optimising the division of the
mean photon number between the coherent and squeezed
modes. For large numbers of photons, N � 1, we find that
the optimum is given by sinh2 r ≈ e2r/4 ≈ √

N/2. This
gives the limit to the phase resolution attainable using
squeezed light [7]

∆φ = N−3/4. (14)

2.3 Equal intensity input modes

This squeezed-state limit is not the ultimate limit. It has
been shown that a phase resolution that is inversely pro-
portional to N should be possible [12]. This limit is often
referred to as the “Heisenberg” limit because of the ap-
parent uncertainty relation between photon number and
phase. This qualitative idea has been given a rigorous
meaning by Summy and Pegg who derived the phase op-
timized states of light using the Hermitian optical phase
operator [22]. A number of proposals have been made for
realising interferometry at the “Heisenberg” limit. Here,
we concentrate on the one by Holland and Burnett [12] in
which the two input modes are prepared with a precisely
equal number of photons. It is sufficient for our purposes
to consider only the case in which both input modes con-
tain precisely N/2 photons, |N/2〉+|N/2〉−. At first sight
this might seem strange as equation (7) suggests that we
should keep the difference in the number of photons in
the input modes as large as possible. In order to reach
the optimal resolution, however, will have to work at a
different operating point and also give up any knowledge
of the sign of the phase shift. It is easier to demonstrate
interferometry with these states in the Schrödinger pic-
ture rather than in the Heisenberg picture used previously.
This means performing the unitary transformation inher-
ent in (1) on the input state. This gives the output state
of the two modes

|Out〉 = exp
(

φ + ∆φ

2

(
â†b̂ − b̂†â

))
|N/2〉a|N/2〉b. (15)

We choose the operating point φ = 0, so that, in the ab-
sence of any phase shift, each of the output modes con-
tains precisely N/2 photons. We will be able to detect
small phase shifts by any deviations from exact equality
in the number of photons detected in the output modes.
The probability that 2q more photons are detected in out-
put mode a than in mode b, given the phase shift ∆φ is
simply [12]

P (2q|∆φ) = |a〈(N/2) + q|b〈(N/2) − q|
× exp(

∆φ

2
(â†b̂ − b̂†â))|N/2〉a|N/2〉b|2

≈ J2
q

(
N∆φ

2

)
, (16)

where the approximation is valid for q � N and Jq de-
notes the Bessel function of order q. A simple derivation of
this expression is given in Appendix A. The measurement
described here is rather different to that considered in the
preceding sections and so we require a new figure of merit
with which to determine the minimum resolvable phase
shift. We recall that for zero phase shift, the numbers of
photons in each output is exactly N/2 and that any phase
shift will result is a deviation from this balance. We asso-
ciate the minimum resolvable phase shift with a reduction
in the probability for equal numbers of photons from 1
to 1/2. This means that we require the smallest value of
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Fig. 1. Setup for beam displacement measurement.

∆φ for which J2
0 (N∆φ/2) = 1/2. The resulting minimum

resolvable phase shift is

∆φ ≈ 2.24
N

· (17)

Naturally, measuring phase shifts in this way would be
extremely sensitive to losses and finite detector efficien-
cies [23]. We should note, however, that an experiment
has been performed with photon pairs (N = 2) [24].

3 Quantum noise in beam displacement
measurements

The principle of a beam displacement measurement is
sketched in Figure 1. A split detector is used, which mea-
sures the photon numbers N+ and N− of the two halves of
an impinging beam. One monitors the intensity difference
N+ − N− between these two detectors, which are large
compared to the size of beam to be used and also to the
deflection to be detected. Assuming that the beam is ini-
tially centered on the split detector, the signal is zero, and
any relative displacement in the x-direction between the
detector and the beam gives rise to an imbalance between
the two photodetectors, and therefore to a measurable sig-
nal on N+ − N−.

It has been pointed out that there is a natural con-
nection between interferometry and such a displacement
measurement [5]. In essence, this is because we can view
beam deflection as a phase shift across the beam due to
the fact that the deflection causes the path lengths to
differ for rays on either side of the beam. We might ex-
pect, therefore, that the use of non-classical states of light
would allow us to improve on the standard quantum limit
for beam deflection measurements [18,19]. For the pur-
poses of this paper, we require only a simple description
of beam displacement and its measurement. The two de-
tectors of the split detector can be considered to divide
the x–y-plane into two parts. The minus detector counts
photons in the half plane x < 0 and the plus detector
counts photons in the half plane x > 0. The optical beam
should be chosen to be propagating in the z-direction and
to be symmetrical in x so that, for the centered beam, the
same average number of photons will be detected in each
side of the split detector. For definiteness, we consider a
Gaussian beam with amplitude even in x:

ue =
1

π1/2w0
exp

(
−x2 + y2

2w2
0

)
· (18)

It is helpful to also introduce a “flipped” or odd-Gaussian
mode with an amplitude that changes sign at x = 0 [19]:

uo =
1

π1/2w0
exp

(
−x2 + y2

2w2
0

)
sign(x). (19)

We note that this rather unlikely looking mode can be
written as a well-behaved superposition of the more fa-
miliar odd-order Hermite-Gaussian modes:

uo =exp
(
−x2 + y2

2w2
0

) ∞∑
n=0

H2n+1

(
x

w0

)
(−1)n

(2n + 1)n!22nπ3/4
·

(20)

The two sides of the split detector will be sensitive to
the fields in the regions of positive or negative x (u+ and
u− respectively). We can write these amplitudes as simple
superpositions of ue and uo:

u+ =
1√
2
(ue + uo)

u− =
1√
2
(ue − uo). (21)

We can assign annihilation operators to each of these
modes and these will be related in the same way as the
field amplitudes:

â+ =
1√
2
(âe + âo)

â− =
1√
2
(âe − âo). (22)

This is reminiscent of the relations (1) for an interferom-
eter. The use of non-classical states of light to improve
resolution relies on this similarity.

3.1 Standard quantum limit

The standard quantum limit is reached when the even
mode ae is prepared in a coherent state, with the odd
mode ao left in its vacuum state. As with interferometry,
we can determine this limiting resolution by setting the
signal to noise ratio equal to unity. The signal is obtained
by measuring the difference in the numbers of photons
detected in the two sides of the split detector. If the beam
is displaced by the amount ∆x, then this difference in
photon numbers is

〈â†
+â+〉 − 〈â†

−â−〉 = |α|22
∫ ∆x

0

dx

∫ ∞

−∞
dy|ue|2. (23)

The integral corresponds to the proportion of the mode
that is transfered between the two halves of the split de-
tector by virtue of the beam displacement. For small dis-
placements and the Gaussian mode (18) this gives the
signal

〈â†
+â+〉 − 〈â†

−â−〉 = N
2∆x

π1/2w0
, (24)
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where N = |α|2. The noise level is set by the uncer-
tainty in the difference in photon numbers recorded in
the two halves of the split detector with the beam centred
on x = 0. A straightforward calculation shows this to be〈

(â†
+â+ − â†

−â−)2
〉

= N. (25)

The square root of this variance is the required uncertainty
and sets the noise level. Hence the signal to noise ratio for
the beam displacement measurement is

Signal
Noise

=
2N∆x

π1/2w0N1/2
· (26)

Setting this ratio equal to unity gives us a measure of the
smallest detectable beam deflection

∆x =
(

π1/2w0

2

)
1

N1/2
· (27)

This is the standard quantum limit for a beam deflection
measurement. As in interferometry, the attainable reso-
lution is proportional to the inverse square root of the
number of photons employed.

3.2 Squeezed states

The standard quantum limit can be beaten by preparing
the odd mode a0 in a squeezed vacuum state [18,19], with
the coherent state retained for the even mode. This does
not change the signal (24), but does modify the signal
to noise ratio by reducing the noise. The variance in the
difference between the numbers of photons detected in the
two halves of the split detector for the undisplaced beam is

〈(â†
+â+ − â†

−â−)2〉 = |α|2〈(â0e−iθ + â†
0e

iθ)2〉 + 〈â†
0â0〉,

(28)

where θ = arg(α). For a suitable choice of squeezed state,
this variance becomes

〈(â†
+â+ − â†

−â−)2〉 = |α|2e−2r + sinh2 r, (29)

so that the signal to noise ratio is

Signal
Noise

=
2N∆x

π1/2w0(|α|2e−2r + sinh2 r)1/2
· (30)

Note that the numerator is proportional to the total mean
number of photons N = |α|2 + sinh2 r, rather than to the
difference between the number of coherent and squeezed
photons found for the interferometer (12). This is because
of the differing forms of the signal for interferometry and
beam deflection, (7) and (24). The denominators, however,
have the same form. For moderate levels of squeezing, for
which |α|2 � sinh2 r, we can neglect sinh2 r and also the
difference between |α|2 and N . This leads to a simplified
form for the smallest detectable beam displacement

∆x =
(

π1/2w0

2

)
1

N1/2er
, (31)

which represents an improvement over the standard quan-
tum limit (27) by the factor er. This is the same factor
by which moderate squeezing enabled us to surpass the
standard quantum limit in interferometry. This improved
resolution has recently been observed in experiment [19]. If
very strongly squeezed light were available then we would
have to take account of the number of photons in the
squeezed mode and calculate the optimum level of squeez-
ing. As with interferometry, we find that the optimum
value sinh2 r =

√
N/2, which gives the limit to the beam

displacement resolution attainable using squeezed light

∆x =
(

π1/2w0

2

)
1

N3/4
· (32)

Again we see the connection between interferometry and
beam displacement measurements manifests itself in the
quantum regime. In both cases, optimally squeezed light
allows provides a resolution that betters the standard
quantum limit by N1/4.

3.3 Equal intensity input modes

We can use the results from interferometry to suggest
how we might go beyond the squeezed state limit (32) for
beam displacement measurements. For interferometers, we
found that using modes with exactly equal numbers of
photons allowed us to attain a phase resolution propor-
tional the the inverse power of the total number of pho-
tons. We also had to give up knowledge of the sign of the
phase shift. We will see that the same kind of state also
allows us to reach a beam displacement resolution that is
proportional to N−1. For beam deflection measurements,
however, we do not lose information about the direction of
the displacement. We again work in the Schrödinger pic-
ture and prepare both the plus and minus modes (21) in
a state containing precisely N/2 photons, |N/2〉+|N/2〉−.
This means that in the absence of any deflection, the two
halves of the split detector will each register N/2 pho-
tocounts. We can then detect a beam displacement by a
deviation from this exact equality in the number of pho-
tons. If the beam displacement ∆x is positive, then the
number of counts registered in the plus detector can only
exceed the number registered in the minus detector. Each
photon prepared in the mode a+ will be detected in the
plus detector, but each photon prepared in the minus de-
tector will now be detected in the plus detector with a
probability given by the overlap of the displaced minus
mode with the plus detector:

p =
∫ ∞

−∞
dy

∫ ∆x

0

dx|ue|2 ≈ ∆x

π1/2w0
· (33)

The probability that 2q more photons are counted in the
plus detector than in the minus detector, given that the
beam displacement in ∆x, is given by the Bernoulli sam-
pling formula [21]

P (2q|∆x) = pq(1 − p)N−q N !
q!(N − q)!

· (34)
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We can apply to this measurement the same figure of merit
as we employed in our discussion of interferometry. We as-
sociate the minimum resolvable beam displacement with
a reduction to 1/2 in the probability for equal numbers
of photons being counted in the two halves of the split
detector. This means that we require the value of ∆x
for which [1 − ∆x/(π1/2w0)]N = 1/2. We show in Ap-
pendix A that for large N this gives the minimum resolv-
able displacement

∆x =
(

π1/2w0

2

)
2 ln 2
N

· (35)

Once again we see the connection between interferometry
and beam displacement measurements. In both cases, the
best resolution is attained by using modes with precisely
equal numbers of photons. An important difference is that
the beam deflection measurement provides the sign of the
displacement, but the interferometer does not give the sign
of the phase shift. This is due to the different manner in
which the signal is detected.

4 Conclusion

Both optical interferometry and beam displacement mea-
surements have a standard quantum limit to resolution.
This limit is proportional to the inverse square root of the
number of photons employed. The standard quantum limit
can be surpassed, however, by using squeezed states of
light [7–11,18,19]. This relationship between interferome-
try and beam displacement measurements is not an acci-
dent, but rather arises from a simple physical connection
between the two types of experiment [5]. We have demon-
strated this connection for squeezed states of light, both
for currently attainable moderate levels of squeezing and
also for optimally squeezed light. We have also shown that
the relationship persists as we seek the “Heisenberg” limit
to sensitivity by using equal intensity states. It is probable
that other schemes that have been proposed for interfer-
ometry beyond the standard quantum limit will also be
applicable to improve beam deflection methods [25,26].
Squeezing and the use of quantum correlations have also
been suggested as a means to improve measurement sen-
sitivity on trapped atoms and ions [27–29] and Bose-
Einstein condensates [30,31]. These proposals involve im-
proving interferometry or frequency measurements. Our
work suggests that such techniques might also prove useful
in improving the resolution of imaging in coherent atom
optics.
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Appendix A: Two approximations

We derive here two simple approximations used in the
text to demonstrate the “Heisenberg” limits for interfer-
ometry [12] and for beam deflection. The first approxima-
tion is given in equation (16). We start by considering the
operator in the exponent and noting that

(
â†b̂

)n

|N/2〉a|N/2〉b =

√
N

2
+ 1 · · ·

√
N

2
+ n

√
N

2
· · ·

×
√

N

2
+ 1 − n|(N/2) + n〉a|(N/2) − n〉b

≈ (N/2)n|(N/2) + n〉a|(N/2) − n〉b, (A.1)

where the approximation holds for n � N . Hence, with
this restriction, we can write our operator in the approxi-
mate form

∆φ

2
(â†b̂ − b̂†â) ≈ N∆φ

4
(Û − Û †). (A.2)

Here Û is a unitary operator on the sub-space of states
containing precisely N photons [32]

Û =
N−1∑
l=0

|l + 1〉aa〈l| ⊗ |N − l − 1〉bb

×〈N − l| + |0〉aa〈N | ⊗ |N〉bb〈0|. (A.3)

We can now approximate the unitary operator in (16) as

exp
(

∆φ

2
(â†b̂ − b̂†â)

)
≈ exp

(
N∆φ

4
(Û − Û †)

)

=
∞∑

n=−∞
Jn

(
N∆φ

2

)
Ûn, (A.4)

where we have used the identity [33]

exp
[
x

2

(
t − 1

t

)]
=

∞∑
n=−∞

tnJn(x). (A.5)

We should note that the infinite limits in (A.4) are only
formally correct as our approximation holds only for
n � N . The approximation in (16) now follows from the
n = q term in (A.4). It is also possible, of course, to derive
this approximation by explicitly calculating the matrix el-
ements in (16) and then considering the limit q � N . Our
second approximation is needed in order to obtain (35).
We require the solution of the equation

(
1 − ∆x

π1/2w0

)N

= 1/2. (A.6)
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We can write the left hand side as an exponential by em-
ploying the inequalities [34]

ex >

(
1 +

x

y

)y

> e
xy

x+y , (A.7)

which hold for positive values of x and y. We can apply this
formula by writing x = N∆x/(π1/2w0) and y = N . For
large N , we expect the resolution to better the standard
quantum limit so that x � y. In this limit both sides
of (A.7) tend to ex and we can approximate (A.6) as

(
1 − ∆x

π1/2w0

)N

≈ exp
(
− N∆x

π1/2w0

)
· (A.8)

Setting this equal to 1/2 gives the required minimum re-
solvable beam displacement (35).
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